

FOUNDATION DESIGN CALCULATIONS OF 16 M HIGH MAST M/S- PLATEFORMES INDUSTRIELLES DU CONGO POINTE-NOIRE SAU Republic of the Congo - Soil investigation Part 02 (20221223 - 20230201)

A. DESIGN PARAMETERS

	1)	Soil Bearing Capacity	:	40.79	T/m ²		
	2)	Ground Water Table	:	1.5m	epon		
	3)	Grade of concrete	:	M-	20		
<u>B</u>	LOA	OS AT BOTTOM OF MAST AS PER ULTIMATE LIMIT STATE	<u>ATE</u>				
	1)	Max.wind pressure (Wp) Wp = 0.06 x Vd x Vd	:	1349.76	N/m ²		
	2)	Total wind force on luminaire (Wfl) Wfl = Awt x Wp	:	1188.47	Ν		
	3)	Unit wind pressure at the top of the mast (Wt) = Sf x d x Wp	:	149.62	N/m.		
	4)	Unit wind pressure at the bottom of the mast (WB) = Sf x D x Wp	:	359.09	N/m.		
	5)	Net wind pressure on complete mast (Wnet) = ((Wt + Wb)/2) x Ht	:	4069.70	Ν		
	6)	Total horizontal force on complete mast	:	7.64	kN		
	7)	Over turning moment at base of the mast	:	73.04	kN-m		
Thus various forces acting on the foundation are as follows							
	1)	Downward/ Vertical load of the mast system (Fv)	:	656.00 0.66	kg T		
	2)	Total horizontal force	:	778.56	kg		
	3)	Moment at the base of the foundation (73.04 + 7.64 * (1.4 + 0.3)) / 1.24 * 100	:	7045.25	kg-m		

ASSUME A FOUNDATION OF THE FOLLOWING SIZE

EX000621-16M_HM(250W_12F)_PLATEFORMES INDUSTRIELLES_R0_SK SAP.Opp.no. 50769

Check for Soil pressure

	Density of Concrete	=		2.50	T/m ³		
	<u>Weight of foundation (Wf)</u> = Weight of pedestal + Weight of raft	=		7.31	т		
	Density of soil	=	as per	1.65 SBC re	T/m ³		
	Weight of soil acting on raft (Ws)	=	uo poi	11.11	T		
Thus total vertical load acting on the soil below foundation is $\underline{F' v} = Weight of system + weight of foundation + weight of soil$							
	= Fv + Wf + Ws	=		19.07	т		
The Desig	n verification for safe bearing pressure as follows.						
	Section modulus Z	=	L2 x	B2^2/6			
	Z	=		2.93	m ³		
	Soil pressure	=	[(P / L	2X B2)	+/- (M/Z)]		
	Pmax	=		5.23	T/m ²		
	Pmin	=		0.42	T/m ²		
	e (M/P)	=		0.37	m		
	B 3(B2/2-e)	=		2.79	m		
	% of Foundation in contact with ground	=		95.20	%		
		=		5.23 <	T/m ² 40.79	SAFE	
0.42			5.23				
Check aga	ainst overturning	-					

Factor of safety = Restoring moment(due to D.L) / Over turningmoment					
Restoring moment for 50 % of soil weight	= F2 v x L2 /2 *0.9 = 15.82 T-m				
Factor of safety	= 2.25 > 1.50 SAFE				

Check ag	gainst sliding							
Slidi	ng force	=	0.7786 T					
Coe	fficient of friction (tan 25)	=	0.466					
Frict	tional capacity	=	8.89 T					
Fact	tor of safety	=	11.42 >	1.50	SAFE			
<u>DESIGN</u>	OF PEDESTAL							
Ped	estal size	=	800X800 m	m				
Che	ck for L/D	=	1.88					
Des	ign as Pedestal							
Load	d on pedestal -P	=	2.90 T					
Mon	nent @ bottom of pedestal -M	=	8.536 T·	-m				
Assi	ume Cover	=	50 m	m				
Pu/	fck bd	=	0.0036					
Mu /	′ fck bd^2	=	0.0145					
d' /D	Refer design aids of concrete, Chart 44	=	0.06					
p / fo	ck	=	negligible					
pt	(Provide a min of 0.15% steel.)	=	negligible %	,				
Con	sider diameter of bar	=	12 m	m				
Assi	ume Pt	=	0.27 %	,				
	Nos of Bar Required	=	16					
pt _{ACI}	t 8 Tor Rings at c/c of	=	0.3 % 190 c/	c				
Prov	Provide 16 tor 12 mm steel as longitudinal reinforcement & tor 8 mm ties @ 190 c/c.							
Z of	f pedestal = 1/6 * B^3	=	8.5E+07 m	3				
Dire	ct Stress Due to P (P/A) s _{cc,cal}	=	0.07 N	/m²	SAFE			
Der			1 500	. 2	0/11 2			
Ben	Scbc	=	1.500 N < 7	/m ⁻	SAFE			
Com	abined Stress $(s_{cc,cal} / s_{cc} + s_{cbc,cal} / s_{cbc})$	=	0.23 N < 1	/m²	SAFE			

DESIGN OF RAFT

		Ī					
-		900					
//	800	/					
			1.82				
0.42	critical sectior		5 227				
SOIL	PRESSURE DIA	GRAM	0.221				
Effective cantilever span			= 0.	9 m			
Soil Pressure @ critical sect	ion		= 3.5	6 T/m²			
Net Max. Cantilever moment 3.56*0.9^2/2+0.5*(5.23-3.56)	t @ bottom 2)*0.9*0.9*2/3-1.8/	2*0.9^2/2	= 1.1	6 T-m/m			
Mu		:	= 17.3	5 kN-m/m			
Assume Cover			= 5	0 mm			
d 300-50-10/2			= 24	5 mm			
Mu / bd^2			= 0.28	9			
Pt			= 0.08	7 %			
Pt act			= 0.14	1 %			
Ast/m (Provide Ptmin=0.12%	́ь)		= 29	4 mm ²			
Consider diameter of bar			= 1	0 mm			
Spacing of bars			= 25	0 mm			
11 tor 10 bothways @ bottom							
Soil Pressure from top			= 1.8	2 T/m ²			
Max. Cantilever moment on	top		= 0.3	7 T-m/m			
Mu at top		:	= 5.5	1 kN-m/m			
Mu / bd^2			= 0.09	2			
Pt		:	= 0.02	8 %			
Pt act			= 0.14	1 %			
Ast/m (Provide Ptmin=0.12%	<u>6)</u>	:	= 36	0 mm²			
Consider diameter of bar			= 1	0 mm			
Spacing of bars = 250 mm							

11 tor 10 bothways @ top

CHECK FOR ONE WAY SHEAR

SAFE

CHECK FOR TWO WAY SHEAR

Critical section is at 'd/2 ' from face of column.

